Analysis Patterns Specifications: Filling the Gaps

Marta Pantoquilho®, Ricardo Raminhos?, Jogo Araujo®

Departamento de Informética
Faculdade de Ciéncias e Tecnologia
Universidade Nova de Lisboa
Quintada Torre, 2829-516 Caparica
Portugal
E-mail: * mbp@netvisao.pt, 2 rfr@netvisao.pt, 2 ja@di.fct.unl.pt

Abstract. Patterns present solutions for recurrent problems in software engineering. They are applicable at
different stages of the software development process. This paper focuses on patterns at requirements and
analysis level. Although the term “requirements patterns’ has appeared in the requirements engineering
community, the name “analysis patterns’ is more established in the patterns community. Here we briefly
discuss these terms and the existing approaches. The main goal of this paper is to propose a new template to
fill some gaps concerning the specification of analysis patterns.

1 Introduction

The traditional software development lifecycle includes the following phases. requirements elicitation,
analysis, design, implementation and test. Each phase creates a more detailed image of the system than the
previous one. Nevertheless, to be effective, software development must consider reuse since early stages.
Patterns are considered a successful technique to help reusing previous specifications and solutions.

Software patterns are classified in different categories depending on various factors including their application
to the software development phases (see Figure 1). The most common patterns are analysis and design patterns.
Anti-patterns are a kind of pattern that embraces all the devel opment phases (including the test phase), as well as
the project management area.

H.aiullun\:n!"l -_'-.\,x .
R P s =
TR TE A

-

Pt irariverica Anakysis Dﬁn Dewelopment oy

Figurel - Project lifeline with the corresponding patternsto each phase.

The term requirements patterns appeared in the requirements engineering community [Robertson, 1996]
[Konrad and Cheng, 2002], but it is not widely used. Requirements patterns document user needs and specify the
generic system behaviour at a high level of abstraction. Regquirements patterns are also suitable to describe
generic actions that developers can take to improve non-functional regquirements, such as performance, security,
reliability, maintainability and accuracy. These actions are related to client-system interaction or operator-system
relation.

The purpose of analysis patterns is to build an analysis model, which will focus on business conceptual
structures processes instead of software implementations. The main concerns of these patterns are the conceptual
models and the flexibility and reuse of the resulting systems. The conceptual structures are represented by a
static structure, entity relations (e.g. objects or functions) and data transformations.

The main goal of this paper is to propose a new template to specify analysis patterns. But before that we want
to discuss and compare some of the existing approaches and clarify the difference between analysis and
reguirements patterns.

This paper is organised as follows. Section 2 describes and compares some previous work on requirements
and analysis patterns. Section 3 proposes a template to describe analysis patterns. Section 4 illustrates the pattern
with an example. Finally, Section 5 draws some conclusions and discusses some future work.

2 Requirementsand analysis patter ns approaches

In this section we described the state-of-the-art of requirements and analysis patterns. Afterwards, we
establish a comparison between these patterns.

2.1 Requirements patterns

In [Robertson, 1996], S. Robertson uses an event/use case approach and employs a very simple template for
the pattern description with only 4 fields: name, context, solution and related patterns. Robertson suggests that
events and use cases should be used to divide the system in small chunks. These chunks can then be structured
into a pattern. Patterns are, therefore, catalogued, based on the name of the use case to which they refer. In her
paper, Robertson shows how a particular problem can be abstracted at different levels in order to become a
pattern used in different problems.

S. Konrad and B. Cheng [Konrad and Cheng, 2002] focused on requirements patterns for embedded systems.
They use a UML approach (class, use case and sequence diagrams) for the pattern definition. Also, they explain
the pattern context using problem frames [Jackson, 2000]. A very extensive and detailed template is used to
describe the pattern (13 fields), based upon the one suggested by GoF [Gamma et al, 1995] for design patterns.

We notice that the term requirements patterns does not differentiate from analysis patterns described as
follows.

2.2 Analysis Patterns

M. Fowler [Fowler, 1997], initially proposed the concept of analysis patterns for the representation of
conceptual models for commercia processes (accountability, commercial trades and organizational relations).
Refinement patterns (design, architectural, etc) are never suggested, and the solution is mostly conceptual. The
author presents each pattern through an informal / technical discussion without any kind of structured template.

E. B. Fernandez and X. Yuan present the Semantic Analysis Pattern (SAP) approach [Fernandez and Y uan,
2000]. SAP is “a pattern that describes a small set of coherent Use Cases that together describe a basic generic
application”. The selection of use casesis realised carefully to maximise reusability.

Thework by A. Geyer-Schulz and M. Hahdler [Geyer-Schulz and Hahsler, 2001] introduces some structure to
analysis patterns. They focused on the cooperative work domain and collaboration between applications.

Analysis patterns proposals include patterns for oil refineries [Zhen and Shao, 2002], the order and shipment
of a product [Fernandez et a., 2000], the repair of an entity [Fernandez and Y uan, 2001], negotiation [Hamza
and Fayad, 2003], course management [Y uan and Fernandez, 2003]. Also, in [Hamza and Fayad, 2002] a pattern
language is proposed to achieve stability while constructing analysis patterns.

2.3 Comparison between Requirements and Analysis patterns

Here we present a short comparison between requirements and analysis patterns, depicted in table 1. In this
comparison, we point out the main characteristics of the approaches of both kinds of patterns and also what we
consider to be their limitations.

Table 1 - Comparison between Requirements and Analysis patterns.
I Characteristics

e They capture in detail functiona and non- < Littleresearchin thisfield.

functional reguirements. . . :
& e High commitment to the solution

» They can be extended by design or architectural domain, due to decisions
patterns. expressed in the pattern.
. e They dlow a smooth transition to the ¢ The existence of a variety of
Requirements implementation phase, due to the pattern templates for the different
Patterns detailed description. approaches.

e They are a more directed form to the ¢ The existing approaches do not
programmer understanding. seem to justify the term
requirements patterns as they use
similar principles as analysis

patterns.

e They are suitable for the description of ¢ The presentation form (degenerate

conceptua problems. template) used by M. Fowler
: . Fowler, 1997], is | i
e They present low commitment to the solution ! ovx_/f_er : 997] S oW 1n
: : : specification detail and
domain allowing a high level of freedom for information about the pattern
implementation due to their sparse description

specification details.

e The existence of a variety of
templates for the different
approaches.

» Due to the high abstraction level, there is a huge
gap between the patterns specification and

ATE RIS implementation.

Patterns
e They provide a more directed form to the
architect understanding.

e |n order to migrate to the implementation level,
an extra iteration is needed. This extra step
could be the transformation of an analysis
pattern into a requirement pattern. We would
be passing from a low level to a high-level
implementation detail.

» Lotsof work in thisfield.

This comparison is important to highlight the fact that what defines requirements patterns is not
significantly different from analysis patterns, from the approaches studied. Thisis aresult of their proximity, i.e.,
they are closely related and share a similar level of abstraction. To avoid confusion with these terms, we suggest
that patterns at thislevel of abstraction be called only analysis patterns, by requirements engineering and patterns
community. Furthermore, not having a consensus on how these patterns should be specified prevents them from
being accepted widely.

We propose a template with elements that are common to these approaches and new elements to fill some
gaps that we consider are missing. In the next section we will present such template. Note that this template is
only for analysis patterns, since it still is not clear what requirements really are as their objectives. However, the
template also comprises requirements patterns aspects.

3 A Templatefor Analysis Patterns

In this section we present a template to specify analysis patterns. Table 2 shows the attributes of the template
and their respective descriptions. The attributes which were not a part of any previous template are ticked in the
final column. The proposed template is based upon the one described in the POSA approach [Buschmann et al.,
96] [Schmidt et al., 2000].

Attributes Short Description
Name* Pattern identifier.

Also Known as

Evolution*

Table 2 - Template for requirements and analysis patterns.

Structural Adjustments*

Problem*

M otivation*

Context*

Applicability*

Requirements*

Modelling*

Resultant Context*

Functional*

Non-Functional *

Dependencies*

Priorities*

Conflict Resolution*

Participants*

Class
Diagram*

Structure*

Object
description*

Collaboration
or Sequence
Diagrams

Activity

1 *
Behaviour Diagrams

State
Diagrams

Variants

Additional names that can also identify
this pattern.

Chronological register of all previous
versions of this pattern. The following
notation should be used: {Date, Author,
Reason, Changes}. To be used by
developers who have aready used the
pattern to check its changes.

Presentation of field extensions and
omissions to the pattern templ ate.

A short description of the problem that
this pattern solves.

Description of a problematic situation
intended to motivate the use of the
pattern.

Wide description of the environment in
which the problem and solution recur and
for which the solution is desirable.
Description of the conditions wherein the
pattern can be applied.

List of al functional
organised through use cases.

requirements

List of al non-functional requirements.

Identification of dependencies for
requirements. This could be represented
through a graph.

Definition of priorities among the
requirements. This could be represented
by a hierarchical structure.

Explanation for requirements interaction
and conflict resolution.

Identification and description of the
actors that interact with the system.
Structure of the elements of the pattern.

Objects description and their
responsibilities.

Suitable for scenarios description.

Suitable for
description.

scenarios and overal

Suitable for
description.

scenarios and overal

Description of alternative solutions.
System configuration after the pattern
application. Includes the description of all
requirements not addressed

DN N N N N N N N NN

Advantages and disadvantages of the
pattern application

Most common pitfalls that can be ‘/
originated from the pattern application

One or more application examples that
illustrate: initial context, how the pattern

Consequences*

Anti-Patterns Traps

Examples* was applied and al transformations
necessary to the initial context so that it
could be applied

List of similar patterns (describing similar
problems and solutions)

Design or architectural patterns that can ‘/
be used for further refinement

Advices on how the pattern should be
I mplementation implemented (without specific details e.g.
code)
Describes known pattern occurrences and
applications in existing systems. This
should include at least three different
systems

Related Patterns

Refinement Patterns

Known Uses*

* - Required field
Below we discuss the newly introduced attributes.

Evolution: This attribute explains al the transformations the pattern suffered. With the addition of the
evolution field we can track the pattern progress. from current state to the original version. This helps
developers that have already used the pattern identify what changes have taken place. This makes it easier for
the developers to adapt to the new version of the pattern. Also, if they want to propose modifications to the
pattern, they should know what has been done before. This can help validate the new modifications. In the
construction of the original pattern this field should only contain information about the Date and Author. In
Figure 2 we illustrate the chronological evolution for an abstract pattern.

Author: First change author

Date: Creation date

Author: Original Author E Date: First change date

Reason: The pattern was not
applicable to the new domain

Changes: Addition of classes to the
class diagram.

Figure2 - Evolution tracking system.

Structural Adjustments: This field explains the structure adopted to describe the pattern. It should include
al additional extensions, al omitted fields and the reasons for those decisions. With this information the
reader can easily understand the used structure. We suggest the use of alayout similar to the one presented in
Table 3.

Table 3: Suggested structural adjustments layout.
Attribute Extension Omisson | Reason

I mplementation \/ Reason for the omission

New attribute \/ Reason for the extension

Requirements. This field (divided in six sub-fields) contains a description of all requirements that must be
addressed to solve the problem (how they interact and are balanced). A highly detailed problem specification
is gained trough the addition of this attribute. With the division, it becomes simpler the understanding of the
requirements involved, their type (functional, non functional), their dependencies and priorities and how they
are solved. Concerning non-functional requirements, we do not show how they are addressed in the design
model, but the approach by Araujo and Weiss [Araujo and Weiss, 2002] can be used for this. They use the
NFR framework [Chung et &, 2000] for describing a design context and also a set of related patterns. The
outcome is that several design issues related to system architecture may be addressed by the integration of
various patterns. We can also extract a use case diagram from the requirements, which shows the services
used by the actors (participants).

For the Priorities field we suggest the use of a hierarchical structure as depicted in Figure 3.

-- High
. _ Priority
Eemquirement 1 Eequirement 2
Eequirement 3 Eequirement 4
Eequirement 5
__ Low
Priority

Figure 3: Suggested hierarchical diagram.

For the Dependencies field we suggest the use of a dependencies graph. One example is presented in Figure 4.
We read Requirement 1 depends on Requirement 2 and Requirement 3, and so on.

Requirement 1 L Requirement 2 — Requirement 4

l

Requirement 3 - Requirement 5 >

Figure4: Suggested dependency graph.

In prior template versions, the requirements were addressed in the field forces. This was an unstructured
field that contained a mixture of functional and non-functional requirements. With our approach, we add
structure to the requirements identification and documentation. We aso add information about their
relationship - dependencies and priorities. To ease the pattern understanding we propose the use of
illustrative diagrams:. a hierarchical diagram for the requirements priorities resolution and a dependency graph
for the dependencies establishment. With the inclusion of the participants attribute, we can describe the actors
that will manipulate the system. These actors are the ones that will interact with the use cases identified in the
Functional field.

Modelling: In this section are presented several models that illustrate the problem solution. This solution is
divided in two main groups: behaviour and structure.

Structure: This group represents the solution’s static structural aspects using a UML class diagram.
More detailed specification can be obtained in the attribute Object Description. This field describes
all objects that are present in the class diagram. Note that the class diagram can be represented in
different levels of abstraction.

Behaviour: Offers an illustrative set of scenarios, and also describes the overall pattern behaviour.
The pattern should contain at least one scenario example, in an abstract level, and one overall
description. Two distinct levels are focused: scenarios examples that show only part of the system,
and the overall system behaviour, which illustrates the system's functioning as a whole. There is a
great freedom on the diagrams choice that illustrates this field. At least an activity diagram showing
the overall system behaviour should be included. In other templates this section only contained
examples of part of the system behaviour. Although important, thisis not sufficient, because the user
does not have aglobal vision of the system functionality.

The modelling description is presented in previous pattern templates under the name Solution. Although some
fields are commonly used in both Modelling and Solution, the modelling approach offers a more detailed,
structured and visual (with the addition of several diagrams) understanding.

« Anti-patternstraps: With this field we try to avoid common errors in this pattern application by presenting
the most common negative results. This field should contain a list of anti-patterns names and a short
description of each. To recover from a negative solution the user, using the anti-pattern name as lookup key,
should refer to William Brown in [Brown, 1998].

« Refinement patterns. This attribute is used to suggest or identify suitable patterns (e.g. design or
architectural) that can be applied to the implementation of this pattern.

4 Example
To illustrate, we present an example that uses the template to specify the analysis pattern Party from [Fowler,
1997].
Name Party
Also Known as To be determined.
{ date: 1997,
author: Martin Fowler }

Evolution { date: 2003, . . .
authors: M.Pantoquilho, R. Raminhos and J. Araljjo,
reasons: to add more information
Changes: Adaptation of the degenerative formto a

structured template.}

Structural Adjustments None.

To model an address book that contains people and

Problem)

companies.
“Take alook through your address boo, and what do you
see? You will see alot of addresses, telephone numbers, the

Moativation odd email address ... all linked to something. Often that

something is a person, however the odd company shows
up.” [Fowler, 1997]

Persons and Organizations are present in amost every
system that deals with people. The address book isjust an

Context example. Persons and Organizations share a common

behaviour; they address a common set of objects (telephone
numbers, email addresses ...) and operations over them.

Applicability When you have people and organizations in your model

and you see common behaviour.

Requirements

Functional

Non-Functional

Dependencies

Priorities

R1: Each Person or Organization has none or more
telephone numbers.

R2: Each Person or Organization has none or more
addresses.

R3: Each Person or Organization has none or more e-mail
addresses.

R4: Person and Organization share some descriptive data.
R5: Each Person or Organization may obtain, add or
modify information about other persons or
organizations.

Use case model:

e

>

—

Party \ —
K\ N

/

X X -

Query Teleghmarme Nurrmzer

Persan Orgarn zatiar C‘>

Query Address

CQuery E-Mail Addness

R6: Person / Organization must be authorized
(security).

R7: Information must be obtained in a short period of
time (performance).

R8: Information must be correct (accuracy).

Conflict Resolution

Participants
Modelling Class Diagram
Structure
Object
Description

Collaboration or

Sequence
Diagrams

Behaviour

The non functional requirements of performance (R7) and
security (R6) may enter in conflict. However this conflict is
solved by the assignment of prioritiesto the different
reguirements.

Person and Organization

0.1

————
Telephan:s Murtsr

————

Per son: Defines a person.

Organization: Defines an organization.

Party: Super type defining a Person or Organization.
Contains all common functionalities to both of them.
Telephone Number: Describes a telephone number.
Address: Defines an address.

E-mail Address: Defines an e-mail address.

The Person and Organization classes contain the specific
data to each entity that they describe. The common
attributes are held at the Party class.

The Party is defined through the relations with the classes
Telephone number, Address, and E-mail Address.

Sequence diagram for the use case Query Address

o
A

- Perzan

Address

| (et Address |

(Address)

Activity
Diagrams

Variants

Resultant Context

Consequences

Anti-Patterns Traps

Examples

Related Patterns
Refinement Patterns

Implementation

Known Uses

i Y
| Autharize user |

o

l/ .

W W
rd ™ Fa Y
L Add Infarmratiarr) [Get Informatiarr |
, #’ b e

W b]
rd Y . & Y
L Confirm }—:)@f.:—(\ Return Infarmatian]

W =

., -,

Another possible solution is presented in [Fowler, 1997]
(below). Although this variant also solves the problem, it
does so adding alot of redundancy (inheritanceis
eliminated and associations are doubled). Therefore, the
solution presented in "Class Diagram” is a better one, for
the reasons pointed in the "Consequences’

field.

Jrganization

a.n

E-rmail Address

“Party is defined as the super type of person and
organization. This allows me to have addresses and phone
numbers for departments within companies, or even
informal teams.” [Fowler, 1997].

Advantages:
1. Elimination of data and code duplication.

Golden Hammer — Persons and Organizations can be
modelled with other patterns than Party. Refer to Related
Patterns, for other pattern information.

The Blob - Party must only contain the common attributes
to Person and Organization. Y ou should resist the
temptation to incorporate al data and operationsin Party.
“In the UK National Health Service, the following would be
parties: Dr. Tom Cairns, the rena unit at St. Mary’s
Hospital, St. Mary’s Hospital, Parkside District Health
Authority, and the Royal College of Physicians.” [Fowler,
1997].

Role Object

Unknown.

Use an object-oriented language to the implement this
pattern.

Although thisis avery simple system, you should resist the
temptation to implement it in asingle class. (avoid the Blob
anti-pattern)

Not specified.

To illustrate the behaviour specification of this pattern, we show sequence and activity diagrams. The
sequence diagram for QueryAddress is described in an abstract form, without including interface and control
objects, asthese are normally added in the design stage. The activity diagram is used here to specify the global
pattern behaviour.

The original Party template used the “Degenerative Form”. This is a very unstructured template form. Other
templates for requirements and analysis patterns have a better structure and a high level of detail. In [Fernandez et
al., 2000] and [Fernandez and Yuan, 2000] patterns are depicted in a systematic way, through context, problem,
forces, solution, consequences, known uses and related patterns. The solution part is described by class, state
transition, sequence and activity diagrams. Patterns described in [Hamza and Fayad, 2002] adopt a similar strategy.

Our approach also uses those diagrams, but organised in a different way. Moreover, we include, more
explicitly, some aspects that we found important, e.g., evolution, dependency, priorities and conflict resolution of
reguirements, anti-patterns.

To demonstrate the template utility and adequacy we filled up the gaps in the origina Party pattern
description (but note that we did not include al the sequence diagrams, for space reasons). The additional
information makes the pattern more complete and easier to understand.

We believe that this template will contribute to provide more useful and organised descriptions of analysis
patterns.

5 Conclusions

This paper discussed and compared the main characteristics and limitations of some approaches for
requirements and analysis patterns, and appropriateness of the term “requirements patterns’. Afterwards, we
presented an approach to represent analysis patterns, i.e., apattern for analysis patterns.

This was accomplished by defining a template that gathered elements from existing approaches and
incorporated new ones that we considered that were missing. The approach was illustrated by applying it to the
Party pattern described in [Fowler, 1997]. We believe that the approach presented will improve the specification
of analysis patterns with more detailed information.

For future work we intend to apply the template to different patterns as a rigorous way of validation and
define a process model for requirements that incorporates the approach described here.

References

[Araujo and Weiss, 2000] |. Araujo and M. Weiss (2002). “Linking Patterns and Non-Functional Requirements’, PLoP 2002,
Allerton Park, Monticello, Illinois, USA.

[Buschmann et a., 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal (1996). Pattern-Oriented
Software Architecture: A System of Patterns, John Wiley & Sons.

[Brown et al, 1998] W. Brown, R. Malveau, H. McCormick, T. Mowbray (1998). Anti-Patterns. Refactoring Software,
Architectures and Projectsin Crisis, John Wiley & Sons.

[Chung et a., 2000] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos (2000), Non-Functional Requirements in Software
Engineering, Kluwer.

[Fernandez and Y uan, 2000] E.B. Fernandez, X. Yuan (2000), "Semantic Analysis Patterns’, 19th International Conference
on Conceptual Modeling, ER2000, Salt Lake City, UT, USA, pp. 183-195.

[Fernandez et al., 2000] E. B. Fernandez, X. Yuan, S. Brey (2000). "Analysis Patterns for the Order and Shipment of a
Product", PLoP 2000, Allerton Park, Monticello, Illinois, USA.

[Fernandez and Yuan, 2000] E. B. Fernandez, X. Yuan, “An Analysis Pattern for the Repair of an Entity”, PLoP 2001,
Allerton Park, Monticello, Illinois, USA.

[Fowler, 1997] M. Fowler (1997). Analysis Patterns - Reusable Object Models, Addison Wesley.

[Gamma et a., 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides (1995). Design Patterns: Elements of Reusable Object-
Oriented Software, New Y ork, Addison-Wesley.

[Geyer-Schulz and Hahdler, 2001] A. Geyer-Schulz, M. Hahsler (2001). "Software Engineering with Analysis Patterns’,
Technical Report 01/2001, Institut fur Informationsverarbeitung und -wirtschaft, Wien, Austria

[Hamza and Fayad, 2002] H. Hamza, M. Fayad (2002). "A Pattern Language for Building Stable Analysis Patterns’, PLoP
2002.

[Hamza and Fayad, 2003] H. Hamza, M. Fayad (2003). "The Negotiation Anaysis Pattern", EuroPLoP 2003, Irsee,
Germany.

[Jackson, 2000] M. Jackson, Problem Frames: Analyzing and Structuring Software Devel opment Problems, Addison Wesley,
2000.

[Konrad and Cheng, 2002] S. Konrad, B. Cheng (2002). Requirements Patterns for Embebed Systems. |IEEE Joint
International Conference on Requirements Engineering, Essen, Germany, 2002.

[Robertson, 1996] S. Robertson (1996). "Requirements Patterns Via Events / Use Cases’, The Atlantic Systems Guild.
http://www.systemsguild.com/GuildSite/ SQR/Requirements _Patterns.html

[Schmidt et a., 2000] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann (2000). Pattern-Oriented Software Architecture.
Volume 2: Patterns for concurrent and network objects, John Wiley & Sons.

[Yuan and Fernandez, 2003] X.Yuan, E.B.Fernandez (2003). "An Anaysis Pattern for Course Management”, EuroPLoP
2003, Irsee, Germany.

[Zhen and Shao, 2002] L. Zhen, G. Shao (2002). "Analysis patterns for oil refineries’, 9th. Pattern Languages of Programs
Conference (PLoP 2002), Allerton Park, Monticello, Illinois, USA.

